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Abstract—A three-dimensional analysis is presented for the bending problem of finite thick plates
with through-the-thickness cracks. A general solution is obtained for Navier's equations of the
theory of elasticity. It is found that the in-pluane stresses and the transverse normal stress at the
crack front are singular with an inverse square root singularity, while the transverse shear stresses
are of the order of unity. Results from a numerical study indicate that the stress intensity factor.
which varies across the thickness, is influenced by the thickness ratio in a significant manner. Results
from a parametric study and those from a comparative study with existing finite clement values are

presented.
NOTATION

2a crack length

£ Young's modulus

G rigidity modulus

LALK D modificd Bessel {unctions of the first and sccond kind, respectively

Ko7} stress intensity factor (commonly referred to as SUIF), expressed as a function of the coordinate
in the thickness direction, i.c. 2

*

Ko(2) factor associated with the singular part of the normal stress component along the thickness
dircction, analogous to K,(7)

21,2824 length, breadth and thickness of the plate (Fig. 1)

M, applicd bending loading

n defined under four dilferent groups as: (i) n =2+ 12, (i) n =24~ 1/2, (i) n =2 +1,

Givin =2 withj=0,123,..., 0

stress resultants and couples in the Cartesian coordimte system

0.0,
MM, .v,_}

A4 cylindrical coordinate system, associated with the Curtesian coordinate system such that the
relations £ = Feos 8, F = Fsinfand 2 = 2 are valid (Fig. 2

"o, W non-dimensionalized displicement components in the cylindrical coordinate system where
{r, v, w) = (Giu, Efa, wla)

[N displacement components in the cylindrical coordinate system

X Y"? non-dimensionalized Cartesian and cylindrical coordinate systems where (X, Y, ) =

0.0 f (Ko, Fia, Zay and (r,0,3) = (Fla. 0, 21a)

Y.r.z Cartesiun coordinate system with the origin at the centre of the plate (Fig. 1)

£F2 Cartesian coordinate system with the origin at the crack front such that ~A<Z<h
(Fig. 2)

() partial derivative with respect to g, &/0¢.

Greek symbuols

x. fi partial derivatives, /¢, 1'r /00, respectively

" real roots, fawhere £ =1+1/2,/=0.1,2,....0

" thickness parameter, i'g

Ag iy complex roots, with k= 1,23, L

i Poisson's ratio

p dilatation

ay extreme fibre stress due to applied beading loading, 36,/ 24°

T,.04. 0,

. stress components in the cylindrical coordinate system

et Ty T,

Gl 6! ry.

o oG stress components in the Cartesian coordinate system

1.2 stress functions.
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INTRODUCTION

[tis well known that the state of stress in the neighbourhood of the crack front in a cracked
plate of finite thickness is three-dimensional in nature. It is, therefore, essential that a three-
dimensional analysis is carried out in order to understand the true behaviour of the stress
and deformation fields prevailing in the vicinity of the crack front.

Among various crack configurations encountered in practice, the through-the-thickness
crack configuration is of particular interest. Recent studies[1-4] in cracked-plate problems
with through-crack geometry have raised some questions such as (i) the type of stress
singularities involved at the crack front, in particular at the corner points where the crack
front penetrates the free plate faces, (ii) the type of variation of the stress intensity factor
(SIF) across the plate thickness, in particular near the plate faces and (iii) the character of
the displacement field prevailing at the crack front. These studies point to the existence of
the inverse square root singularity 1,/r (where r is the radial distance from the crack front)
in the stress field interior to the plate thickness with a predominantly plane strain type of
deformation field. However. near the plate faces, while Refs [1, 2] do not shed any light as
to either the type of stress singularity or the deformation character, the studies in Refs [3, 4]
reveal a Poisson’s ratio-dependent (i) stress singularity, namely 1/(r)" ****, indicating a
displacement singularity at the crack front for g > 1'4. In contrast, in Refs {I,2], the
condition of finiteness of displacement components at the crack front is enforced on the
solution. At this point it may be mentioned that the above-mentioned studies(1-4] are
qualitative in nature since no numerical studies have been carried out. The experimental
studics carricd out by Villarreal er al.[5] serve to confirm the qualitative results presented
in Refs [1-4] regarding the character of the singular deformation ficld interior to the plate
thickness, but, near the plate faces, the results obtained in this paper indicate a rapid
decrease in SIF values, thereby suggesting a reduction in the strength of the singularity in
the region.

More recently, an analytical solution{6] was presented for the three-dimensional stress
problem of a finite thick plate with a through-the-thickness cruck under an extensional
loading. A general solution to the Navier equation was obtained, which revealed that the
in-plane stresses and the transverse normal stress at the crack front were singilar with an
inverse squire root singularity, while the transverse shear stresses were of the order of unity.
The stress intensity factor, which varied with the coordinate in the thickness direction, was
found to depend, predominantly, on the thickness ratio of the plate. The in-plane stresses
preserved the inverse square root singularity all through the plate thickness including the
corner points where the crack front penctrates the faces of the plate. The displacement
components at the crack front were finite ; in fact, this condition was imposed on the solution
solely from physical considerations. Numerical results were obtained for the SIF for some
typical problems. It was found that in the region interior to the plate thickness the STF had
a character, more or less that of plane strain, particularly for large thickness ratios, and for
the case with 2/t — » (where 24 is the plate thickness). the two-dimensional plane strain
solution was mathematically recovered. For particular cases, the results for the SIF appli-
cable for the region interior to the plate thickness were found to be in good agreement with
thosc of the finite clement method{7] and the experimental method[5]. The numerical results
for the SIF valid for other regions across the plate thickness exhibited significant features,
not observed before in carlier investigations.

The above-mentioned investigations deal with extensional loading problems only, in
which the deformation field about the plate middle plane is symmetric. Crack problems
associated with the antisymmetric deformation ficld about the plate middle plane are also
important, since the solution for general loading cases. which are frequently encountered
in practice, requires consideration of both symmetric and antisymmetric fields. A study of
the existing literature reveals that three-dimensional results obtained from analytical
methods for the antisymmetric problems arc not available. In this connection, it may be
mentioned here that the studies carried out by Hartranft and Sih[8] are found to be two-
dimensional in nature for cracked plate problems involving stress-free plate faces. However,
some results obtained by the finite element and photoelastic methods are available[9-12].
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Fig. 1. Coordinate system and plate dimensions (bending loading casce).

Thus, a need for undertaking the three-dimensional analysis using exact theoretical methods
is clearly indicated tor crack problems involving antisymmetric deformation fields, where
the stress intensity fuctor varies in an antisymmetric manner with respect to the plate middle
planc.

In this paper, a three-dimensional clastic analysis is presented for the bending problem
of finite rectungular thick plates with through-the-thickness cracks. The mathematical
formulation is developed using the equations of the theory of clasticity[13, 14]. A gencral
solution 1s obtained, which satisfics exactly the stress-free boundary conditions at the crack
surfuces and the plate faces. The solution also satisfics the boundary conditions at the
exterior (outer) edges of the plate, which include those associated with the applied loading,
in the least square sense. Numerical studics have been carried out for the loading case
involving the application of the uniform unidirectional moment at the exterior plate edges
which are parallel to the crack plane. The effect of various parameters of the problem, in
particular the thickness ratio, on the stress intensity factor has been determined. Some of
the results have also been compared with existing results from the finite element method.
The nature of the present results and those of the comparison study have led to some
interesting conclusions.

FORMULATION OF THE PROBLEM

The problem to be analysed here is that of the bending of a rectangular plate with a
length of 2L, a width of 28 and a thickness equal to 24, containing a central through-the-
thickness crack of length 2« (Fig. 1). The plate is subjected to a uniformal uniaxial bending
moment M, at the outer edges, which are parallel to the crack plane.

The plate bending problem described above involves a deformation character which is
antisymmetric with respect to the middle plane of the plate, that is, the X-Y planc. Specifi-
cally, the in-plane displacements as well as the in-plane stresses (associated with the X- and

Y-directions) and the transverse normal stress (along the Z-axis) are antisymmetric with
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MDOLE PLANE

Fig. 2. Plate of finite dimensions with a through-the-thickness crack under uniform bending loading.

respect to the middle plane, while the transverse displacement and transverse shear stresses
are found to be symmetric with respect to this plane. In developing the mathematical
formulation of the problem the foregoing factors concerning the character of the stress and
displacement distributions across the plate thickness must be tuken into account.

LOCAL COORDINATE SYSTEM

- .

In a Cartesian coordinate system (X, ¥, Z) with the origin located at the centre of

the plate middle plane such that =B < X < B, —L <Y< Land —h<Z < h (Fig. 1),
the crack occupies a region defined by —a < X <a, Y=+0and —h< Z < h For
convenience, the general mathematical formulation is carried out in a local cylindrical
coordinate system (7. 0.Z) in association with the local Cartesian coordinate system
(X, F.7Z) the origin of which is located at the crack tip lying in the plate middle plane. In
view of the local coordinate system chosen, it is necessary to consider for analysis only the
region defined by ~a < ¥ < (B-a). —L < V<L and —h < Z < h with appropriatc
continuity conditions at ¥ = —a. where 2¢ is the crack length, and other boundary con-
ditions of the problem (Fig. 2). in the locul coordinate system, the relations X = 7 cos 0,
¥ = 7sin 0 and Z = Z between the Cartesian and cylindrical coordinate system are valid.

It is convenient to introduce the following nondimensionalization of the coordinate
systems (X, ¥, Z) and (7.0, Z). and other related quantitics :

Fa=r. 0=0. Zlau=. Xla=X=rcos0. Via=Y=rsin0

¢

0 _ 4 a at

== _. aff=f1= . "=, 2=

‘ or aff =/ r o ¢ ¢ or-
I I et - : . . , ¢F
fr= x4+ v, D=0 =2"+f". n=hua, Vi=0"+ 55
r co- e
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where

. (:2 (12
D =+ %
e ol

¢ +l ¢ + 1 ¢

OFF T FCF P ol

It may be noted that. with the above notation. the limit —# < Z < & corresponds to
—n € ¢ < n. In later developments the following notation with respect to Poisson’s ratio
i would be useful:

o= L(l=w), =1 =2u). p;=p/(1=2pu).

Governing equations

The governing partial differential equations of the problem arc the equations of equi-
librium in terms of the displacement components &, ¢ and W along the 7, 0- and Z-
directions, as derived from the three-dimensional equations of the theory of clasticity. The
corresponding cquations in the non-dimensionalized cylindrical coordinate system (r, 0.,()
are given as{13, 14]

(V= Urilu—=2/nfle+,xp =0
(Vi=1/r)e+ /) fu+p:fip =0
Viw+pp =0 H

where

In eqns (1), u, v and w are the non-dimensionalized displacement components along
the r-, - and {-directions, respectively, as defined by « = ii/a, v = Flu, and w = W/a. Also,
in this equation, p is the dilatation given by

u
p=au+fir+ - +w'. (2)
r

The expressions for the stresses (6,.6,.6..0,,6,.,06,.) in terms of the displacement com-
ponents, as derived from Hooke's law, are given as{13]

6,12G = 2+,

a4/2G = (Br+ujr)+,p

0./2G = w' +,;p

0,0/2G = Yfu+xe—r'r)

6,.12G = Yaw+u)

00:/2G = M(fw+17). (3)
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Boundury conditions

Solution to the governing equations. eqns (1). must satisfy the boundary conditions
of the problem, which include those at the plate faces. crack surfaces. and at the exterior
edges of the plate (Fig. 2). They can be written as:

exterior edges of the plate

at X=-I, u,=06.=0,=0 4
at X=8Ba-1, o, =0,=0.=0 (5)
at Y=+Lla o, =(0)2h=0CM,2h"\Zh. o.=0,=0 (6)

where M, is the applied bending moment ;

plate faces (Z = +horl = +hia=1n)
(7

I
Q
I
=)

G.. = Oy;

r:

crack surfaces (0 = +n)

G =0, =06y, =0 (8)

[n eqns (4) (6). u, is the displacement component along the V-direction while g, o,
a.,.a..and a, are the stress components in the (X, Y, {) coordinate system. It s to be noted
here, that egns (4) actually represent the continuity conditions, referred to carlier (Fig. 1),

It is to be noted that in eqns (4) (8), only X, Y, { and u, arc dimensionless. Further
formulation will be developed in the non-dimensional (r, 0, ) system. However, the coor-
dinate 7, wherever it occurs, appears as Z/, in association with 4.

Solution

Nuture of the proposed solution. The total solution to the governing cquations, eqns
(1), which is proposed herein, consists of three independent solutions which, individually,
satisty eqns (1), The first independent solution which is herein referred to as the symbolic
solution is constructed by tollowing Lur'e’s[13] symbolic method of constructing solutions
to eygns (1). The second independent solution is called the “elementary’ solution, while the
third independent solution may be referred to as the “associated™ solution. In arriving at
these three solutions, the procedure introduced by Lur'e[13], in which the quantities x, 3
and o are regarded as numbers, has been followed. The above three independent solutions,
individually, satisfy the boundary condition at the plate faces as defined by eqns (7). The
above three independent solutions arc allowed to satisfy together the boundary conditions
at the crack surfaces and, also, those at the exterior cdges of the plite as defined by egqns
(8) and (4) (6).

The total solution to the governing equations, cqns (1), consisting of the above-
mentioned three independent solutions may be written as

u= —nx(g o +5.x)+Bs/0)Q
=Bl +x1%) —2(s/)Q
W=+ 9)

~

where . ¢ and Q. which correspond to “symbolic™, “elementary™ and “associated™ solu-
tions. respectively, arce functions of the r- and 0-coordinates only. and are solutions of the
following differential equations:
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(6% — (/1Y = 0
[0~ Wn/n)}Q2=0

8y = 0. (10)

In eqns (9) and (10), § =sind:z, and w, are the complex roots of the equation
sin2e—20, =0, k=1,2,3,.... . Here, I' = {+1/2 with the range for / defined as:
1=0.1.2,3,.... »0. The functions ¢, ¥, x, and x. of eqns (9). which are functions of the
s-coordinate only, are given as

Y () = (1 =-2)SC/on+(imCC+S§

¥2(0) = 2(1—p)CC+8;SC—-nd5C

Q) = 2(L=p) (L =80 )+ Q=& n* {{/n~1/3E/m*}

220 =201 =) = 2( = ) + (1 =P /n*)} (1)

where
C = cos 6.

Inegns (11), §and € arc the values of § and C at the plate faces ({ = +nor Z = +h).
The solutions to the differential equations, eqns (10), may be taken in the following form :

Y(r.0) =Re Y Y di, I (anr/n) cos nd

n k-1

x(r.0) =3 5 F[M, cos (1=2)0+ N, cos 10]

n om0

Qr.)y =Y Z Cnl (" 7r/y) sin n0 (12)

n i-0
where
! =n+2m.

In eqns (£2), [, are modificd Bessel functions of the first kind. Here, d,, are unknown
complex constants, while C,, M, and N, arc real constants. The range of n appearing in
these equations will be discussed later. It is to be noted from eqns (9)-(12) that the solutions
u, v and w to the governing equations, eqns (1), satisfy the boundary conditions at the plate
faces as given by eqns (7). and the unknown constants d,,, C,, M, and N, are to be
determined from the satisfaction of other boundary conditions of the problem, namely eqns
{4)-(6) and (8). The expressions for the stress components can be determined by substituting
eqns (9) into egns (3).

An inspection of the three component solutions, namely the “symbolic™, “elementary™
and “associated™ solutions (which are associated with the functions i, x and Q, respectively),
reveals that the stress and displacement fields produced by any onc of these three solutions
are different from those of the other two. The presence of this feature establishes the
independence of the three component solutions, which together form the total solution as
defined by egns (9).

Satisfaction of crack surface boundary conditions and range of n

In order to facilitate the satisfaction of the crack surface boundary conditions (8) (at
@ = +mn). it is necessary to express the stresses involved in power series form in r and
Fourier series form in { involving C,({) or 5,({). as the case may be, where Ci{{) = cos {'n{/n
and S,() = sin I'n{/n. It is to be noted that the stress components as determined from the
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“associated™ solution are obtained in a Fourier series form in the (-coordinate (as they
appear in their original form). Therefore, it is only necessary to express the stress com-
ponents assoctated with the “symbolic” and “¢lementary™ solutions in Fourier series form.
Noting that the original form of these solutions with respect to the [-coordinate involves

such terms as S, CJ. C. S (where § = sin v,y and C = cos w,{ n). appropriate relations
connecting these terms to C(0) or §.(). as the case may be, are used[15]. In dealing with
the r-coordinate. the modified Bessel functions /,(['r/n) with [T = w or {' 7, can be expressed
in series form in powers of r by using the power series expansion of Bessel functions[16]. The
Appendix gives g, expressed in this form. The expressions for other stress and displacement
components can be obtained in similar forms. Having expressed the stresses involved
(0. 6.4. 0..) in appropriate forms. the boundary conditions at the crack surfaces (f = + )
may now be satisfied for each power of r and with respect to each value of / appearing in
these series expansions.

At this point it is appropriate to consider the range of #n in the series expansions
occurring in the expressions for the stresses and displacements. [n this connection it may
be recalled that the order # of modified Bessel functions. /,. consists both of fractional and
integer values, and may include positive as well as negative values. Also the satisfaction
of crack surface boundary conditions suggests that n should be expressed as follows:
n=2i+12 n=2jand n = 2j+ [, where j is assigned positive as well as negative values.
The actual permissible range of # is governed by the condition that the displacement
components (u, r, w) at the crack front are finite. Due to this requirement n 2 (— 1/2). The
condition of finiteness of displacements at the crack front is enforced on the solution solely
from physical considerations, and in ensuring this condition it is the total solution that
must be considered (u, v, w as given by egns (9)). When the condition of finiteness of all
the three displacement components at the crack front is enforced on the total solution of
the problem, two groups of ranges for 2 are found to be valid

Group l:a=2/+1/2, j=0,1.2,....%0

Group2:n=2+land 2/, j=0,1,2,..., . (13)

In assigning values to n some particular cases need special treatment. The rigid body
displacements arising from terms such as ¢ constant and r cos 8, which are obtained when
n+2m =0 and 1, have been retained. However, terms such as In r, also derived from
n+2m = 0, have been excluded from the analysis, since they produce infinite displacements
at the crack front.

In satisfying the boundary conditions at the crack surfaces, both fractional and integer
vilues must be assigned to #, according to Groups | and 2 defined in eqns (13).

Satisfaction of crack surface boundary conditions as described wbove leads to four sets
of homogeneous algebraic equations corresponding to Groups | and 2. Euch equation
involves the unknown constants N,, M,, d,, and C,. The constants are determined from
the satisfaction of the boundary conditions at the exterior of the plate, as given by egns
(4)-(6).

Boundary conditions at the exterior {(outer) edyes of the plate

Since the solution has been obtained in the cylindrical coordinate system (r, 0, ¢) and
the exterior edges of the plate are rectilincar, these boundary conditions must be satisfied
by the boundary point least squares method with respect to the (r, 0,0) coordinates, in
association with the (X, Y.J) coordinates. In order to reduce the analytical and numerical
work involved in satisfying these boundary conditions to manageable proportions, the
stress boundary conditions of ¢qns (4)-(6) must be satisfied in terms of stress resultants
and stress couples rather than unit stresses. The boundary condition u, = 0 appearing in
eqn (4) 1s replaced by its equivalent ¢, = 0 where ¢, is the average rotation about the Y-
axis at the edge X = ~ |, The corresponding modified boundary conditions may be written
as
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at X=-1. ¢, =0, =M, =0
at X=B8Ba-1, M,=M,=0,=0
at Y==xLla, M =M,

the applied uniform moment
Q. =M,=0 (14)

where

h

¢, = l2/(2h)’f uZ dZ. (15)

—&

RESULTS AND DISCUSSION

Nature of stresses in power scries form in r

The expressions for the stress components are obtained in series form in powers of r,
e.g. expressions for g, given in the Appendix. It may be observed from the expression for
oy that the values for n as determined from eqns (13), when substituted into the series
expansions, lead to r terms containing both positive and negative powers. A consideration
of only negative powers leads to such tems as 7=, r= ' r =2 r=%2 __/in decreasing order.
When the condition of finitencss of displacement components at the crack front is enforced
on the solution, it is found that all the r terms with negative powers vanish except for the
r ' *term. Thus, the only term which can lead to singular stresses is the r~ V2 term. It may
be mentioned here that the behaviour of other stress components, except for transverse
shear stresses, is similar. The transverse shear stresses are of the order of unity.

Mathematical expression for the stress intensity fuctor
The state of stress in the neighbourhood of the crack front is of special interest in a
crack problem. In this region, where r « 1, the stress distribution can be expressed as
o, = Ko(Z)[1/4(27)")(5cos 0/2 —cos 30/2)+ O(1)
6y = Ko(Z)[1/4(27) "] (3 cos 02+ cos 30/2) + O(1)
6,0 = Ko(Z)[1/4(2) "3 (sin 0/2+sin 30/2) + O(1)
. = Ko(Z)[4/2027"] cos 072+ 0(1) (16)
o,. = 0(l), ay.=0(l). (7
It may be observed from eqns (16) and (17) that the in-plane stresses o,, 0y and 6,4 as

well as the transverse normal stress 6, are singular with an inverse square root singularity
(1/r"%). while the transverse shear stresses o,. and 6, arc of the order of unity. In these

equations Ky(Z) is the stress intensity factor and Ky(Z) the factor associated with the
singular term of ¢.. The expressions for these factors are given as

Ko(Z) = (2a0)'*(4G) Z (=)' 'SUZ)[EM 3 (1 + /(' m)*
/=0

+Re Y d¥ (@i nay— (1 +wgu}l  (18)

kol

ku(Z) = Q@) (4G) T Re Y (= D" 'S(Z)dg - 3 (i in auln (19)
=0

ko |

where

SAS 28:7-C



692 K. T. SUNDARA RaJa [YENGAR ef al.

S{Z)y=sin'nZ:h=sinl'nlny.

In eqns (18) and (19). 42 .- and M, . are the constants, referred to earher, with
respectton = —1 2.

At this point it is useful to study whether the expression for the SIF as given by
eqn (18) would permit any manipulation. Such a process may throw some light on the
characteristics of various terms involved in this equation. In this connection. it may be
observed that the first term in eqn (18) for K. associated with the constant M, ., can be
reduced to a simpler form. Denoting the first term by K" and the second term associated
with the constant ¢ | 5, by K., itis noted that K, = K" + A}, The simpler form of the
first term can now be expressed as

R owa' 2 = — 2004+ 00D MO B A2 (20)
where
By, =2{1— )M 5/u. Qn
In deriving expression (20) the following refations have been used

Zih=2Y (= 1S(Z)'n)*

I

D= (DER (= ph)]

it

M, (applicd moment loading) = (2, 3)a /",

The expression for K", as given by cqn (20), has now assumed a simpler form and
involves a variation in Z which iy linear in form. 1t s interesting that at the plate taces
(7 = +/). eqn (20) becomes identical to eqn (2.39) of Ref. [17] where Reissner’s theory
has been used, provided B, ,ofeqn 2 issetequal o A4 /e In making this comparison,
care has been taken to verily that 8, , possesses the same dimension as that of A/ Ja
in Ref. [17].

Thus, it is seen that the first term of the expression for SIE, as defined by eqn (18),
represents the SHEF ol the corresponding two-dimenstonal bending problem ot Reissner’s
theory. It s, thercfore, evident thut the second term on eqn (18}, which docs not permit
any simplification of tts form, imparts the required three-dimensional charucter to the

expression for the stress intensity fuctor, It is interesting to note that the expression for l:',,.
representing the singular transverse normal stress, does not permit any simplification in its
form analogous to that of the first term of eqn (18). This behaviour is to be expected
sinee Retssner’s two-dimensional formulation involves the disappearance of the trunsverse
normal stress everywhere.

Some important  features exhibited by the stress state and displacement field in the
neighhourhood of the crack front

It may be observed from eyns (16) that the in-plance stresses (0,.0,.0,,) and the
transverse normal stress 4, 1n the neighbourhood of the crack front, contain inverse square
root singularity. The transverse shear stresses are of the order of unity, as can be observed
from eqns (17). The angular variation of the singular stresses s the same as that of the two-
dimensional plane strain problem. The stress intensity factor is found to depend on Z and
the thickness parameter g( = /A/a), the actual variation with respect to Z s in the form of a
Fouarier series. A mathematical study of the expression for the SIF as given by eqn (18)
indicates that K(Z) does not vanish at the plate faces { = +4 (or Z = +h). It is to be
noted that A(Z) vanishes at the plate faces. thereby leading to the disappearance of the
singular part of o, there. This behaviour is to be expected sinee the condition o, = 0 formed
one of the boundary conditions at the plate faces (cqn (7). It is noteworthy that all the
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displacement components are finite at the crack front; this condition was, in fact, enforced
on the total solution of the problem solely from physical considerations. It is to be noted
that the above-mentioned features concerning the type of stress singularity, and angular
variation of singular stresses were also observed in the corresponding three-dimensional
analysis of the extension problem[6].

A comparison study of the present results with the existing two-dimensional results
from Reissner’s theory{17-19] indicate that the type of stress singularity. nature of the
angular variation of singular stresses and character of transverse shear stresses around the
crack front are the same. In contrast. the results from classical theory exhibit the following
features: (i) the angular variation of singular stresses is dependent on Poisson’s ratio.
(it) the transverse shear stresses are singular with a singularity of 1/r**[20.21]. and
(i1t} the in-plane stresses exhibit the inverse square root singularity. It may be observed
that only the last feature is in agreement with the present results.

The stress intensity factor K,(Z) of the present bending problem is found to be a
function of the Z-coordinate and the thickness ratio 7( = #/a). In this connection various
aspects of the SIF have been discussed by Sih[22]. in particular at the corner points where
the crack penctrates the faces of the plate. Sih and co-workers[1. 22} have pointed to the
disappearance of SIF at the plate faces as an unsound feature, intuitively. The SIF as
defined by Ky(Z) in eqn (18) does not vanish at the plate fuces. In discussing the nature of
SIF varnation across the thickness, it may be mentioned that the formulations based on the
classical theory and Reissner’s theory lead to stress intensity factors with only a lincar
variation across the thickness. However, the improved bending theory proposed by
Hartranft and Sth[8] and Sih[23] leads to the SIF with a general variation across
the plate thickness. This result occurs even though the theory proposed is two-dimensional
in character for plates with a through-crack geometry and stress-free plate fuces.

It may be observed from expression (19) for I.\’,,(Z)‘ the factor associated with the
singular term of a., that this quantity is a function of the Z-coordinate in the form of a
Fourier series. The important feature of this stress () lies in its general variation across
the thickness, in the zone lying between the plate faces and the plate middie plane. n
contrast, the transverse normal stress o, vanishes, completely, everywhere in the plate
donxain in the analysis of crack problems where the formulition is based on Reissner's
theory. This is also true of the higher order theories proposed by Sih[23], and Hartranft
and Sih[8] in situations where the plate faces (Z = +h) experience stress-free conditions.
The significant feature to be noted here is that even the higher order plate bending theories
proposed by these authors, where all the six components of the stress field have a general
vartiation with respect to the Z-coordinate (across the thickness), reduce to one with all the
charucteristics of two-dimensional sixth-order (Reissner's) plate theory. This is by virtue
of the transverse normal stress vanishing everywhere in the plate domain. It is noteworthy
that in the present analysis 6. and &a./0¢ vanish at the plate faces, as can be observed from

the expression for Ky(Z). This feature arises from the disappearance of the transverse shear
stresses and a consideration of the cquations of equilibrium along the Z-direction, at the
plate faces.

Finally, it is noteworthy that all the displacement components are finite along the
crack front. In fact, this condition was enforced on the solution solely from physical
considerations. This same procedure was followed by other investigators{l, 2].

In the preceding discussion some of the important features of the results obtained in
the neighbourhood of the crack front were brought out solely from the mathematical form
of eqns (16) -(19}. Their significance was discussed in the light of the existing results from
two-dimensional investigations. It will be interesting to determine the nature of the results
for this region that may emerge following numerical studies.

Discussion of numerical results —a comparison study with existing results
Three-dimensional finite element results presented by Hilton and Sih[9], and Alwar
and Nambissan{[10] can be used for comparison purposes. The variation of SIF across the
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Fig. 3. Companson of present results for SIF (vaniation across thickness) with FEM results.

thickness obtained by the present method for the plate geometry L/B = 0.5 and a/B = 0.5
corresponding to two thickness ratios, namely n = 0.25 and 1.0 are shown in Fig. 3. Here,
gt was taken to be cqual to 1/3. Also shown in this figure are the corresponding distributions
for 5 = 0.25 obtained by Hilton and Sih[9] and by Alwar and Nambissan[10]. Forn = 1.0
the results of Alwar and Nambissan are provided. It may be observed from this figure that
for the case with 7 = .25, the present method furnishes results for the SIF variation which
is almost lincar for the major part of the thickness except in the vicinity of the plate faces.
The corresponding FEM results indicate a lincar variation all through the thickness of the
plate. In addition, for this thickness ratio (4 = 0.25), while the results of Hilton and Sih are
in good agreement with the present values (within 4% at the plate faces) those of Alwar
and Nambissan arc obscrved to deviate from the present results significantly (24.8% at the
plate faces). For the case with n = 1.0, the results of the present method are in reasonable
agreement with FEM results at the plate faces (within 5.2%). However, the SIF variations
across the thickness are themselves not in good agreement for the plate region lying outside
the mid-thickness region. It is interesting to note that at the plate faces, the percentage
difference between the present results and those of Alwar and Nambissan tends to decrease
gradually as the thickness ratios increase from = 0.25 to 1.0. From Fig. 4 for the plate
geometry L/B = 0.5, a/B = /3 and y = 1,125, the present results for the SIF are in close
agreement with those of Alwar and Nambissan except in a small region near the plate faces,
where the differences experienced between the two results are less than 4%. Itis significant
that the thickness rutio of 1.125, associated with a percentage difference of 4 as in Fig. 4,
turns out to be larger than the i value of 1.0 associated with a percentage difference of 5.2
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Fig. 4. Comparison of present results with FEM results for SIF variation across thickness.



Three-dimensional elastic analysis of cracked thick plates under bending ficlds 695

175 v T T T
{— )} PRESENT
(~==--1 MURTHY ET AL
L5 b ( REISSNERS THEORY)
125+ a/8=1/2 |
¢
E-
N
F-3
x 10 + -4
a/8= 1/3
o7 i i i 1
[ode) 035 1e] 20 30 35

N ——

Fig. 5. Comparison of present results for SIF (at plate faces) with results from Reissner's theory
for square plates (L8 = 1.0, u = 1'3).

as observed from Fig. 3. This suggests that the FEM results[10] are found to be in increas-
ingly better agreement with the present results, as 4 values increase.

[t appears that no new results from three-dimensional investigations. other than those
of Hartranft and Sth[8] and Alwar and Nambissan[10] obtained by FEM, are available in
the literature for the bending problem. In view of this, further comparison studies would
be carried out with results from two-dimensional investigations. This would permit deter-
mination of threc-dimensional cffects and also an assessment of the order of accuracy of
two-dimensional results.

The two-dimensional results from Reissner’s theory obtained by Murthy er al.[18]
have been used for comparison with the present three-dimensional values, The percentage
differences between the three- and two-dimensional results have been plotted in Fig, 5. [t
may be observed from these results that, for a given value of the ¢/ 8 ratio, as g increases
the SIF values are also found to increase. However, the magnitude of these increases for
the three-dimensional case is smaller than that for the two-dimensional case. In addition,
as the @/ B ratio increases, say from 1/3 to 2/3, the rate of increase of SIF values with n is
also observed to increase. [t may be mentioned here that the percentage differences between
the three- and two-dimensional results are found to increase with increases in n values, for
a given value of the /B ratio. 1t is interesting to note that the percentage differences
assoctated with various # values for the case with «/8 = 1/3 are larger than the cor-
responding values associated with either ¢f 8 = 1/2 or 2/3. Thus, Fig. 5 reveals that the
three-dimensional effects on the state of stress are reflected by decreases in SIF values from
their two-dimensional values, the magnitude of these decreases increasing with increases in
the thickness ratio n, for all cases of width ratios {«/B) considered.

Another interesting aspect of the results to be considered is the variation of SIF through
the thickness of the plate. Figure 6 shows a comparison of the SIF variations across the
thickness as determined by the present method with those obtained from Reissner’s theory
by Murthy et a/.[18] for three different thickness ratios, namely n = 0.35, 1.0 and 2.0. It
can be observed from this figure that for the three-dimensional case the SIF variation in the
mid-thickness region (say up to about Z = 0.64) is lincar, for all three 5 values considered.
However, beyond the mid-thickness region, the SIF varies in a non-lincar manner, the
intensity of nonlincarity increasing with increasces in g values, In contrast, the corresponding
distributions for SIF for the two-dimensional case as determined from Reissner’s theory
are completely linear all through the plate thickness. This behaviour is to be expected since
the stress intensity factor is, mathematically, found to have a Z-dependency which is lincar
in form. It is significant that the most interesting aspect of the SIF variation across the
thickness occurs at the free surfaces of the plate, Z = +4. It assumes maximum values
there for both three- and two-dimensional cascs, as can be observed from Fig. 6.

It has been noted earlier that not only the in-planc stresses but also the transverse
normal stress are singular. It is appropriate now to consider the case of the singular
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transverse normal stress. In this connection, it may be stated that, since the transverse
normal stress o, vanishes everywhere in the plate domain in Reissner’s formulation, no
comparison study can be carried out. However, for completeness, a brief discussion on the
character of the singular transverse normal stress from the present three-dimensional

formulation seems to be appropriate. A plot of the variation of K,(Z), which is the factor
associated with the singular part of the transverse normal stress, is shown in Fig. 7. It may
be noted from this figure that o, vanishes both at the plate middle plane and at the plate
faces (Z = 0 and +/4). The vanishing character of this stress at the plate faces arises from
the satistaction of the boundary condition o, = 0, and the vanishing feature of this stress
at the plate middle plane may be attributed to the antisymmetric nature of o, with respect
to this plane. It is significant that, at the plate faces, not only the transverse normal stress
but also its denivative with respect to the -coordinate vanish, The disappeuarance of 0a./0¢
arises from the disappearance of the transverse shear stresses and a consideration of
cquilibrium in the Z-direction, at the plate faces.

At this point, it is uscful to discuss the experimental results obtained by Mullinex and
Smith[11] as well as Rubayi and Ved([12]. The results of Mullinex and Smith obtiined from
photoclustic studies indicate that the SIF, essentially, varies lincarly across the thickness
tor a wide range of thickness ratios considered in the analysis. In contrast, the results of
Rubayi and Ved, also from photoclastic studies, suggest a non-lincar variation of stresses
across the thickness, the nonlinearity increasing with increases in thickness ratios. While
the results of Mullinex and Smith are in agreement with the theoretical prediction of Sih[23]
for the thickness values lying in the thin plate range, the results of Rubayi and Ved are in
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Fig. 7. Vanation of transverse normal stress across thickness (r — 0).
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good agreement with those of Sih for all thickness ratios considered. In view of the widely
varying nature of results presented in the above two photoclastic investigations & definite
conclusion does not appeitr to be feasible, as far as the experimental results are concerned.
On the other hand the results of Sih[23] (which are two-dimensional in nature for plates
with stress-free Taces, at Z = +4, for reasons stated earlier), exhibit a stress state around
the crack front the variation of which is nonlincar across the thickness, the extent of
nonlinearity increasing with increases in the thickness ratios. Although a dircet comparison
of the present three-dimensional results with those of Sik[23] is not feasible in view of the
differences in the plate geometry, these two results serve, at least, to suggest the presence
of in-planc singulur stresses, This indicates a non-lincar variation for the SIF, with the
intensity of nonlincarity increasing with increases in n values.

Effect of physical parameters on the stress intensity fuctor

The parameters influencing the behaviour of the stress intensity fuctor are the length
ratio L/B. the width ratio a/ B, the thickness ratio n( =h/a) and Poisson’s ratio u. The effect
of these parameters on the SIF has been studied in the numerical analysis. A discussion on
various aspects in this regard are presented below.

Effect of «;B and L} B ratios. Figure 8 shows the variation of SIF at the plate faces
(Z = +h) with the /B ratios for the case with L/B = 0.5 and u = 1/3 for various 5 values.
[t may be observed that for a given i value as the ¢/ B ratio increases the SIF is also found
to increase. But, for increasing # values, the rate of increase of SIF with the «f B ratio also
correspondingly increases, particularly for targe o/ B values (the magnitude of the SIF value
itself increases ; this aspect will be considered later).

The influence of varying the length ratio L/B on the SIF values at the plate faces is
shown in Fig. 9 for the case with @'8 = 0.5 and g = 1/3. for various # values. It may be
obscrved from this figure that as the length ratio increases the STF decreases. It is interesting
to notc that the rate of decrease in the SIF values with the L/ B ratio is found to be greater
for small 57 values. In particular, it is observed that rapid decrcases in SIF values occur in
the region between L/8 = 0.5 and 0.75. Thereafter, the curves tend to become flatter.
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Effect of thickness ratio, n. and Poisson’s ratio, g. Among all the parameters, it appears,
the influence of the thickness parameter i is the most important onc. The influence of 4 on
the stress intensity factor is observed in two different ways : its effect on the nature of SIF
vitriation across the thickness, and its effect on the maximum SIF values. Figure 10 displays
the nature of the changes produced on the SIF variation across the plate thickness by
progressively increasing the  values from 0.25 to 3.0, the plate geometry considered is the
case with L/B = 0.5, «/B = 0.5, and g = 1/3. In general, it is observed from this figure that
in the region interior to the plate thickness the variation is lincar for all the thickness ratios
considered. Beyond the plate interior, as Z/h increases the variations tend to become
nonlinear, the extent of nonlincarity increasing with increases in 5 values. In particular, it
is noted that the most interesting aspect of SIF variations across the thickness occurs at the
plate faces (Z = +h), where the SIF reaches maximum values for all 4 values considered.
An interesting plot of these maximum values as a function of the thickness ratio # is given
in Fig. 11 (sce the distribution corresponding to the case with L/B = a/B = 0.5). As can be
observed, the maximum SIF values (at the plate faces) increase in magnitude with increases
in the thickness ratio . Again, an inspection of Fig. 10 reveals that in the region lying
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Fig. 10. Effect of thickness ratio on SIF variation across the thickness.
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Fig. [ 1. Variation of maximum SIF values (at plate faces, Z = +h) with thickness ratio.

adjacent to the plate faces the SIF (e.g. see the distribution corresponding to n = 3.0) is
found to decrease in magnitude with increases in the distance from the plate faces, but the
rate of decrease brought about is, significantly, very small. However, after a certain distance
is reached, this curve changes its course and approaches the region of lincar variation. The
region lying adjacent to the plate faces (or stress-free plate boundaries) can be conveniently
referred to as the boundary layer region. In this new terminology, it may be stated that the
boundary layer thickness (BLT) decreases with decreases in g values, as can be observed
from Fig. 10. In other words, the BLT is found to increasce as n increases. This behaviour,
it appears, can be attributed to the vanishing of the transverse normal stress at the plate
faces.

At this point, an intensive discussion on the character of SIF as observed in the
boundary layer region is appropriate. In doing so, an analogy with the corresponding
character of SIF observed in the extension problem([6] may lead to some interesting obser-
vations. In the extension problem, it was observed that as g was increased the BLT was
found to decrease and the SIF experienced rapid drops in this region. In contrast, in the
present bending problem, it is noted that with increases in n values the BLT is found to
increase and, in addition, the SUF is also observed to increase. In fuct, even a slightest hint
of any decrease in SIF values is not observed across the plate thickness. Figure 11 shows
the variation of SIF at the plate faces with n values for different L/B ratios. This figure
indicates that the rate of increase of SIF values with n values increases with decreiases in
L/ 8B values.

The effect of Poisson’s ratio g on SIF values is considered next. The effect of u is to
bring about a change in SIF variation across the thickness as well as at the plate faces.
Figure 12 shows the nature of the changes brought about on the variation of SIF across
the thickness for three different values of Poisson’s ratio, namely 1/3, 0.4 and 0.45. The
plate geometry considered here corresponds to L/B = a/B = 0.5, and n = 3.0. As can be
observed from this figure, as u increases, the SIF values are also found to increase all
through the plate thickness. However, the extent of increases produced on SIF is largest in
the boundary layer region. It is significant that the location of the maximum SIF value is
not affected by increasing the g values, in other words, the maximum SIF values are
experienced at the plate faces only. In Fig. 13 the variation of maximum SIF values (at the
plate faces) with the thickness ratio as influenced by increases in i valucs is shown. It is
clear from this figure that for a given value of n, the SIF value increases when u is allowed
to increase, from 1/3 (through 0.4) to 0.45. This phcnomenon as obscrved in Fig. 13 was
also noticed in the investigation carried out by Sih[23]. However, this comparison must be
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Fig. 12. Effect of Poisson’s ratio on SIF variation across thickness.

viewed in a qualitative sense because of the differences in plate geometries considered in
these two investigations.

Transverse normal stress, o.

At this point it is appropriate to study the behaviour of transverse normal stress, o,
for difterent i valucs. Figure 14 displays the variation of the singular part of the transverse
normal stress across the thickness, for the case with L/B = ¢/B = 0.5 and u = 1/3 and for
various values of the thickness ratio, 1. Since i(,,(Z) is the factor associated with the singular
part of this stress, the variation of K, (normalized with respect to a,/a) is shown in this
figure. As mentioned carlicer, the transverse normal stress is a function of the coordinate in
the thickness direction Z. It varies in an antisymmetric manner with respect to the plate
middle plane and, also, vanishes at the plate faces (Z = +4). It may be recalled that the
disappearance of this stress together with the transverse shear stresses have formed bound-
ary conditions (7). Besides, the disappearance of the transverse shear stresses and a con-
sideration of the equilibrium condition along the Z-direction at the plate faces imply the
disappearance of the quantity do,/0¢ at this boundary. The two features associated with
the disappearance of a. and da./0¢ at the plate fuces can be observed in Fig. [4. It may also
be observed from this figure that the transverse normal stress, for any given value of n,
reaches a maximum value at a particular point across the thickness and, thereafter, drops
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Fig. 14. Effect of thickness ratio on variation of g, in ncighbourhood of crack front (r — 0).

rapidly before finally vanishing at the plate faces. In particular, it may be seen that as p
increases the maximum value of the stress is also found to increase. The locations where
these maximum values occur are found to approach the plate faces as the thickness ratio 4
increases. It is believed that it is this phcnomenon of increasing maximum stress values
corresponding to increases in i values that has led to increases in the extent of the boundary
layer region (as n increases), referred to earlier, in connection with the discussion of
Fig. 10,

The results for g, of this paper will now be discussed in the light of previous work in
this arca. The results of other investigations concerning the nature of the transverse normal
stress also will be briefly mentioned. In the photoclastic investigations of Rubayi and
Ved[12] the results for this stress have not been presented. The photocelastic results of
Mullinex and Smith{1 1] for the stress o, indicate that the variations of this stress across the
thickness are similar to the corresponding variations of the present method only in a
qualitative way (a direct comparison is not meaningful in view of vast differences in the
plate geometries considered in the two investigations). In Refs [9.10], finite element results
for the transverse normal stress have not been presented. In discussing the transverse normal
stress, it must be pointed out that the formulations based on Reissner's theory[18] and Sih's
improved theories[23] lead to the disappearance of transverse normal stress everywhere in
the plate domain, for cases with stress-free plate faces.

CONCLUSIONS

A general three-dimensional solution has been presented for the bending problem of
finite thick plates with through-the-thickness cracks. It has been noted that the in-plane
stresses and the transverse normal stress at the crack front are singular with an inverse
square singularity, while the transverse shear stresses are of the order of unity. Among
various parameters of the problem it is the thickness ratio which influences the SIF in a
most significant manner. One of the important features of the solution lies in the character
of the SIF variation across the thickness. Apart from being nonlincar, the SIF does not
decrease as it varics across the thickness. This rules out the possibility of it disappcearing at
the plate faces as suggested in Ref. [9] and the maximum SIF value is thus achieved at the
plate faces. In contrast to Reissner’s theory which indicates a lincar variation for the SIF,
the results of this analysis show that the SIF variation across the thickness has a non-lincar
character. While in Reissner’s theory the transverse normal stress vanishes everywhere in
the plate domain, in the present analysis this stress has non-zero values.
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APPENDIX

The expression for 4, in series form in powers of 7 is given as

a, = Y N RGy(~ D" 'S,(:){ Yottt =N cos i+ [0~y —tf (e DM cos (=200

EREEa) )

Mg A =D (=D (=)Mo *cos (=200 + [(~ l)’/(4/’n)1[iQ,,,(r,U)}J

where

Yoiw = dipd Legriny cos nt)
Q,, = C b4 ey sin ntf
U)ol =)

Yu =

e = oo = (' m)?

fur = Ll = (8 1y

U=i+12 v, =m/4 n=hua

Ay DN oY) D et
5= ) - (/;lt): . ‘Il-‘(l'll)/(l n)".

In the equations written above, 4,i4,7/n) with 4, = m or I'n can be expressed in power series form as

follows]i6}:

(‘;‘if.zll):mf" +im

. m pin, m)

Liriny =B, E:

o, 1

where
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onm) = (n+Dn+n+3) . (n+m). for m21
d(n.m) =0, for m=0.

In the above series expansion B, are arbitrary constants which are absorbed into the unknown constants
occurring in the expressions for stress and displacement components.



